Matlab toolbox for the study of four-bar mechanisms

Autores/as

  • FERNANDO YÉPEZ Docente

Palabras clave:

Toolbox for four-bar mechanisms, GUI for four-bar mechanisms, mechanism design, M4B, Matlab Toolbox

Resumen

Four-bar mechanisms are key components of mechanical engineering used in various industrial and technical applications. These mechanical systems, also known as quadricycles, are made up of four linkages that are connected in a closed form. Four-bar mechanisms provide a broad range of motion and adaptability in designing machines and devices by varying the lengths and angles of these connections. The generated toolbox may be utilized to assist in developing four-bar mechanisms in educational and research settings. The toolbox includes a simple and intuitive interface that allows users to learn about the mechanism’s trajectories, dimensions, locations, velocities, and accelerations. The toolbox can analyze three mechanisms: double rocker, crank, and crank-rocker. The interface produces both numerical and graphical outputs. In addition, a prototype has been added to the toolbox that interacts serially with Matlab, allowing the software’s computations to be compared to real-world values of the mechanism. Finally, if the user makes an error in selecting the mechanism or data entry, the toolbox provides assistance and ideas to correct the issue.

Citas

Arda, M. (2020). Dynamic analysis of a four-bar linkage mechanism. Machines. Technologies. Materials., 14 (5), 186–190.

Cakar, O., & Tanyildizi, A.K. (2018). Application of moving sliding mode control for a dc motor driven four-bar mechanism. Advances in Mechanical Engineering, 10 (3), 1687814018762184.

Ceccarelli, M. (2007). Distinguished figures in mechanism and machine science: Their contributions and legacies. Springer.

Choudhary, V.P., Singh, V.K., Dutta, A. (2017). Design of an optimal 4-bar mechanism based gravity balanced leg orthosis. Journal of Intelligent & Robotic Systems, 86, 485–494.

De-Juan, A., Sancibrian, R., Garcia, P., Viadero, F., Iglesias, M., Fernandez, A. (2012). Kinematic synthesis for linkages with velocity targets. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 6 (4), 472–483.

Ebrahimi, S., & Payvandy, P. (2015). Efficient constrained synthesis of path generating four-bar mechanisms based on the heuristic optimization algorithms. Mechanism and Machine Theory, 85, 189–204.

Ekambaram, M. (2021). Four-bar linkage mechanism in papermaking and its replacement by direct servo drive technology in roll to sheeting lines in a paper mill—converting house. Advances in industrial machines and mechanisms (pp.113–122). Singapore: Springer Singapore.

Eqra, N., Abiri, A.H., Vatankhah, R. (2018). Optimal synthesis of a four-bar linkage for path generation using adaptive pso. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 1–11.

Erenturk, K. (2007). Hybrid control of a mechatronic system: Fuzzy logic and grey system modeling approach. IEEE/ASME Transactions on Mechatronics, 12 (6), 703–710.

Freudenstein, F. (2010). Approximate synthesis of four-bar linkages. Resonance,15 (8), 740–767.

Galo Fariño, R. (2011). Modelo espiral de un proyecto de desarrollo de software. Obtenido de http://www. ojovisual. net/galofarino/modeloespiral.pdf.

Gogate, G.R. (2016). Inverse kinematic and dynamic analysis of planar path generating adjustable mechanism. Mechanism and Machine Theory, 102, 103-122, https://doi.org/10.1016/j.mechmachtheory.2016.03.014 Retrieved from https://www.sciencedirect.com/science/article/pii/S0094114X16300076.

Gonzáles Miranda, D., Estrada Gutierres, E., Roldán Mckinley, J. (2023). Aplicación android para el estudio de mecanismos planos de cuatro barras.

Gundogdu, O., & Erenturk, K. (2005). Fuzzy control of a dc motor driven four-bar mechanism. Mechatronics, 15 (4), 423–438.

Hassan, A., & Abomoharam, M. (2014). Design of a single dof gripper based on four-bar and slider-crank mechanism for educational purposes. Procedia CIRP, 21, 379-384, https://doi.org/https://doi.org/10.1016/j.procir.2014.02.062 Retrieved from https://www.sciencedirect.com/science/article/pii/S221282711400732X (24th CIRP Design Conference).

Huang, T.-H., Huang, H.-P., Kuan, J.-Y. (2014). Mechanism and control of continuous-state coupled elastic actuation. Journal of Intelligent & Robotic Systems, 74, 571–587.

Hurel, J., Flores, F., Suarez, N. (2018). Análisis cinemático y dinámico del mecanismo de cuatro barras de una máquina de ejercicios. Proceedings of the laccei international multi-conference for engineering, education and technology, 2018-july.

Kanna, G.R., & Ashik, M. (2015). Design and development of a rope climbing robot using four bar mechanism with wireless control using tx2/rx2 rf module. 2015 ieee international conference on signal processing, informatics, communication and energy systems (spices) (p. 1-6).

Kim, J.-W., Seo, T., Kim, J. (2016). A new design methodology for four-bar linkage mechanisms based on derivations of coupler curve. Mechanism and Machine Theory, 100, 138-154, https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2016.02.006 Retrieved from https://www.sciencedirect.com/science/article/pii/S0094114X1600032X.

Liaw, H.C., & Shirinzadeh, B. (2008). Enhanced adaptive motion tracking control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulation. Sensors and Actuators A: Physical, 147 (1), 254–262.

Lin, W.Y., Tsai, Y.-H., Hsiao, K.-M. (2017). Optimum variable input speed for kinematic performance of geneva mechanisms using teaching-learning-based optimization algorithm. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231 (10), 1871–1883.

López Solbes, A. (2013). Aplicación matlab para el análisis de mecanismos planos de cuatro barras (Unpublished doctoral dissertation). Universitat Politecnica de Valencia.

Matekar, S.B., & Gogate, G.R. (2012). Optimum synthesis of path generating four-bar mechanisms using differential evolution and a modified error function. Mechanism and Machine Theory, 52, 158-179, https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2012.01.017 Retrieved from https://www.sciencedirect.com/science/article/pii/S0094114X12000286.

McCarthy, J.M., & Soh, G.S. (2010). Geometric design of linkages (Vol. 11). Springer Science & Business Media.

Mercado, D.M., Murgas, G.H., MCkinley, J.R., González, J.D. (2015). Una herramienta computacional didáctica para el análisis cinemático de mecanismos planos de cuatro barras. Revista UIS Ingenierías, 14 (1), 59–69.

Morishita, G.S.d.L. (2015). Otimizacao topológica de mecanismo de quatro barras (B.S. thesis). Universidade Tecnológica Federal do Paraná.

Reino Flores, M., & Galán Marín, G. (2020). Cinemática de mecanismos planos. teoría y problemas resueltos. Universidad de Extremadura, Servicio de Publicaciones.

Rodríguez-Molina, A., Gabriel Villarreal-Cervantes, M., Aldape-Pérez, M. (2018). Adaptive control for the four-bar linkage mechanism based on differential evolution. 2018 ieee congress on evolutionary computation (cec) (p. 1-7).

Russell, K., & Shen, Q. (2012). Revisiting planar four-bar precision synthesis with finite and multiply-separated positions. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 6 (7), 1273–1280.

Saillard, E. (2015). Static/dynamic analyses for validation and improvements of multi-model hpc applications. (Unpublished doctoral dissertation). Université de Bordeaux.

Salah, M., Al-Jarrah, A., Tatlicioglu, E., Banihani, S. (2019). Robust backstepping control for a four-bar linkage mechanism driven by a dc motor. Journal of Intelligent & Robotic Systems, 94, 327–338.

Salcedo, J.L.C. (2020). Aplicación de geogebra en la enseñanza de la cinemática de un mecanismo de cuatro barras application of geogebra in the teaching of kinematics of a four-bar mechanism. Revista Do Instituto GeoGebra Internacional de Sao Paulo, 9 (2), 3–19.

Torres-Moreno, J., Cruz, N., Álvarez, J., Redondo, J., Giménez-Fernandez, A. (2022). An open-source tool for path synthesis of four-bar mechanisms. Mechanism and Machine Theory, 169, 104604.

Vega-Alvarado, E., Santiago-Valentín, E., Sánchez-Márquez, A., Solano-Palma, A., Portilla-Flores, E.A., Flores-Pulido, L. (2014). Síntesis óptima de un mecanismo plano para seguimiento de trayectoria utilizando evolución diferencial. Res. Comput. Sci., 72, 85–98.

Wampler, C.W., Morgan, A., Sommese, A.J. (1992). Complete solution of the nine-point path synthesis problem for four-bar linkages.

Yang, J.-H., Hsu, M.-H., Yan, H.-S. (2016). Kinematic and dynamic characteristics design of a variable-speed machine with slider–crank and screw mechanisms. Journal of Mechanisms and Robotics, 8 (1), 014502.

Yépez, F., Simisterra, J., Yépez, H. (2021). Aplicación basada en la metodología steam: Un juego interactivo. INNOVATION & DEVELOPMENT IN ENGINEERING AND APPLIED SCIENCES, 3 (2).

Yépez Ponce, H.M., Yépez Ponce, D.F., Lapuerta, E.A.P., Mosquera Bone, C.E., Alarcón Angulo, M.L. (2023). Open-source platform for development of taximeters: Adjustment software. M. Botto-Tobar, M. Zambrano Vizuete, S. Montes León, P. Torres-Carrión, & B. Durakovic (Eds.), Applied technologies (pp. 532–544). Cham: Springer Nature Switzerland.

Yildiz, A., Kopmaz, O., Cetin, S.T. (2015). Dynamic modeling and analysis of a four-bar mechanism coupled with a cvt for obtaining variable input speeds. Journal of Mechanical Science and Technology, 29, 1001–1006.

Youcef-Toumi, K., & Kuo, A. (1993). High-speed trajectory control of a direct-drive manipulator. IEEE transactions on robotics and automation, 9 (1), 102–108.

Zapata Loria, P.M., Rodríguez Huerta, J.F., Ceballos Gómez, S.G., Mis May, J.R.(n.d.). Aplicación móvil para el cálculo de posición de mecanismos planos de cuatro barras. Xviv congreso nacional de ingeniería electrica electrónica del mayab. noviembre del 2019 issn 1665-0271 (p. 60).

Zhang, K. (2006). Research on high precision control system of a hybrid five-bar actuator. 2006 international technology and innovation conference (itic 2006) (p. 2149-2154).

Zhang, W., & Chen, X. (2001). Mechatronics design for a programmable closed-loop mechanism. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 215 (3), 365–375.

Zhang, W., Li, Q., Guo, L. (1999). Integrated design of mechanical structure and control algorithm for a programmable four-bar linkage. IEEE/ASME transactions on mechatronics, 4 (4), 354–362.

Descargas

Publicado

2025-07-02

Cómo citar

YÉPEZ, F. (2025). Matlab toolbox for the study of four-bar mechanisms. Investigación Tecnológica IST Central Técnico, 7(1), 7–23. Recuperado a partir de http://www.investigacionistct.ec/ojs/index.php/investigacion_tecnologica/article/view/181