Control de modo deslizante para microrredes: una revisión

Autores/as

  • Héctor Mauricio Yépez Ponce Universidad Politécnica Salesiana
  • Dario Fernando Yépez Ponce Instituto Superior Tecnológico Eloy Alfaro

Palabras clave:

control jerárquico, microrredes AC, microrredes DC, microrredes híbridas, SMC

Resumen

La necesidad de suministrar energía eléctrica a cualquier parte del mundo motivó a la creación del término microrred. En los últimos años ha ido tomando fuerza debido a que una microrred facilita la integración de fuentes renovables (solar, eólica, térmica) para la distribución de energía eléctrica. Las microrredes pueden funcionar de manera independiente, ya sea de manera aislada o en coordinación con la red principal debido a que integran generadores de energía propios, recursos de almacenamiento y tecnologías de información que permiten la organización y control de la red. La implementación de una microrred obliga a plantear estrategias de control que permitan satisfacer con la demanda de carga local, aprovechar la mayor cantidad de energía, reducir costos e incrementar la fiabilidad. Este artículo de revisión presenta la arquitectura de una microrred, modos de operación, niveles de control jerárquico y una comparación de las investigaciones realizadas que han obtenido resultados al realizar simulaciones e implementar los diferentes tipos de controladores en microrredes.

Citas

Agarwal, A., Deekshitha, K., Singh, S., & Fulwani, D. (2015). Sliding mode control of a bidirectional DC/DC converter with constant power load. 2015 IEEE 1st International Conference on Direct Current Microgrids, ICDCM 2015, (c), 287–292. https://doi. org/10.1109/ICDCM.2015.7152056

Ahmed, M. N., Hojabri, M., Humada, A. M., Daniyal, H. Bin, & Frayyeh, H. F. (2015). An Overview on Microgrid Control Strategies. International Journal of Engineering and Advanced Technology, (5), 2249–8958.

Alam, F., Ashfaq, M., Zaidi, S. S., & Memon, A. Y. (2016). Robust droop control design for a hybrid AC/DC microgrid. 2016 UKACC International Conference on Control, UKACC Control 2016. https://doi.org/10.1109/ CONTROL.2016.7737547

Amirkhan, S., Radmehr, M., Rezanejad, M., & Khormali, S. (2020). A robust control technique for stable operation of a DC/AC hybrid microgrid under parameters and loads variations. International Journal of Electrical Power and Energy Systems, 117(October 2019), 105659. https://doi. org/10.1016/j.ijepes.2019.105659

Armghan, H., Yang, M., Wang, M. Q., Ali, N., & Armghan, A. (2020). Nonlinear integral backstepping based control of a DC microgrid with renewable generation and energy storage systems. International Journal of Electrical Power and Energy Systems, 117(October 2019), 105613. https://doi. org/10.1016/j.ijepes.2019.105613

Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2017). A Decentralized Power Management and Sliding Mode Control Strategy for Hybrid AC/DC Microgrids including Renewable Energy Resources. IEEE Transactions on Industrial Informatics, 3203(c), 1–1. https://doi. org/10.1109/tii.2017.2677943

Benadero, L., Cristiano, R., Pagano, D. J., & Ponce, E. (2015). Nonlinear Analysis of Interconnected Power Converters: A Case Study. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 5(3), 326–335. https://doi.org/10.1109/ JETCAS.

Chang, E. C. (2018). Study and application of intelligent sliding mode control for voltage source inverters. Energies, 11(10), 14. https://doi.org/10.3390/en11102544

Coban, R. (2017). Dynamic integral sliding mode control of an electromechanical system. Automatika, 58(3), 266–272. https://doi.or g/10.1080/00051144.2018.1426263

Cucuzzella, M., Lazzari, R., Trip, S., Rosti, S., Sandroni, C., & Ferrara, A. (2018). Sliding mode voltage control of boost converters in DC microgrids. Control Engineering Practice, 73(675999), 161–170. https://doi. org/10.1016/j.conengprac.2018.01.009

Cucuzzella, M., Rosti, S., Cavallo, A., & Ferrara, A. (2017). Decentralized Sliding Mode voltage control in DC microgrids. Proceedings of the American Control Conference, (January 2018), 3445–3450. https://doi. org/10.23919/ACC.2017.7963479

Cucuzzella, M., Trip, S., Ferrara, A., & Scherpen, J. (2019). Cooperative Voltage Control in AC Microgrids. Proceedings of the IEEE Conference on Decision and Control, 2018-Decem(Cdc), 6723–6728. https:// doi.org/10.1109/CDC.2018.8618898

Ghazzali, M., & Haloua, M. (2018). Distributed voltage and frequency control of islanded AC microgrids. Proceedings of 2018 6th International Renewable and Sustainable Energy Conference, IRSEC 2018, 1–6. https://doi.org/10.1109/IRSEC.2018.8702969

Gireesh, G., & Seema, P. N. (2015). High frequency SEPIC Converter with PWM Integral Sliding Mode Control. Proceedings of IEEE International Conference on Technological Advancements in Power and Energy, TAP Energy 2015, 393–397. https://doi. org/10.1109/TAPENERGY.2015.7229651

Gonzalez Castro, N. Y., Cusguen Gomez, C. A., Mojica Nava, E. A., & Pavas Martinez, F. A. (2017). Estrategias de control de calidad de energía en microrredes rurales. Revista UIS Ingenierías, 16(2), 93–104. https://doi. org/10.18273/revuin.v16n2-2017009

Incremona, G. P., Cucuzzella, M., Ferrara, A., & Magni, L. (2018). Model predictive control and sliding mode control for current sharing in microgrids. 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017, 2018-Janua(Cdc), 2661–2666. https://doi.org/10.1109/ CDC.2017.8264045

Lasseter, R.H.(2003). MicroGrids. 305–308. https://doi.org/10.1109/pesw.2002.985003

Li, Z., Cheng, Z., Xu, Y., Wang, Y., Liang, J., & Gao, J. (2019). Hierarchical control of parallel voltage source inverters in AC microgrids. The Journal of Engineering, 2019(16), 1149–1152. https://doi.org/10.1049/ joe.2018.8620

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., … Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Journal of Clinical Epidemiology, 62(10), e1–e34. https://doi.org/10.1016/j. jclinepi.2009.06.006

Ma, W., & Ouyang, S. (2019). Control strategy for inverters in microgrid based on repetitive and state feedback control. International Journal of Electrical Power and Energy Systems, 111(March), 447–458. https:// doi.org/10.1016/j.ijepes.2019.04.002

Medina, R. D. (2014). Microrredes Basadas en Electrónica de Potencia: parte II: Control de Potencia Activa y Reactiva. Ingenius, (12), 24–34. https://doi.org/10.17163/ ings.n12.2014.03

Minhas, D. M., Khalid, R. R., & Frey, G. (2017). Load control for supply-demand balancing under Renewable Energy forecasting. 2017 IEEE 2nd International Conference on Direct Current Microgrids, ICDCM 2017, (June 2016), 365–370. https://doi. org/10.1109/ICDCM.2017.8001071

Mokhtar, M., Marei, M. I., & El-Sattar, A. A. (2019). An adaptive droop control scheme for DC microgrids integrating sliding mode voltage and current controlled boost converters. IEEE Transactions on Smart Grid, 10(2), 1685–1693. https://doi.org/10.1109/ TSG.2017.2776281

Morstyn, T., Savkin, A. V., Hredzak, B., & Tuan, H.D. (2018). Scalable Energy Management for Low Voltage Microgrids Using Multi Agent Storage System Aggregation. IEEE Transactions on Power Systems, 33(2), 1614–1623. https://doi.org/10.1109/TPWRS.2017.2734850

Muhammad Rashad, Muhammad Ashraf, Bhatti, A. I., Minhas, D. M., & Ahmed, B. A. (2018). Mathematical modeling and stability analysis of DC microgrid using SM hysteresis controller. International Journal of Electrical Power and Energy Systems, 95, 507–522. https://doi.org/10.1016/j. ijepes.2017.09.001

Pathan, M., & Thosar, A. (2018). Study on Microgrids and Its Control Using Conventional and Sliding Mode Control. Proceedings of the 2018 International Conference on Current Trends towards Converging Technologies, ICCTCT 2018, 1–7. https://doi. org/10.1109/ICCTCT.2018.8551133

Roy, T. K., Mahmud, M. A., Islam, S. N., Muttaqi, K. M., Haque, M. E., & Oo, A. M. T. (2018). Control and power sharing in hybrid AC/ DC microgrids using a nonlinear backstepping approach. 2018 IEEE Industry Applications Society Annual Meeting, IAS 2018, 1–8. https://doi.org/10.1109/ IAS.2018.8544550

Saha, S., Roy, T. K., Mahmud, M. A., Haque, M. E., & Islam, S. N. (2018). Sensor fault and cyber attack resilient operation of DC microgrids. International Journal of Electrical Power and Energy Systems, 99(December 2016), 540–554. https://doi.org/10.1016/j. ijepes.2018.01.007

Setyawan, L., Peng, W., & Jianfang, X. (2014). Implementation of sliding mode control in DC microgrids. Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, ICIEA 2014, 578–583. https://doi.org/10.1109/ICIEA.2014.6931231

Singh, P., & Lather, J. S. (2018). A PWM-based sliding mode voltage control of DC-DC boost converter for DC microgrid. 8th IEEE Power India International Conference, PIICON 2018. https://doi.org/10.1109/ POWERI.2018.8704456

Singh, S., & Fulwani, D. (2014a). A PWM based sliding-mode control for negative impedance stabilization in DC Micro-girds. Proceedings of 6th IEEE Power India International Conference, PIICON 2014. https://doi.org/10.1109/34084POWERI.2014.7117696

Singh, S., & Fulwani, D. (2014b). Constant power loads: A solution using sliding mode control. IECON Proceedings (Industrial Electronics Conference), 1989–1995. https:// doi.org/10.1109/IECON.2014.7048775

Stramosk, V., Benadero, L., Pagano, D. J., & Ponce, E. (2013). Sliding mode control of interconnected power electronic converters in DC microgrids. IECON Proceedings (Industrial Electronics Conference), 8385–8390. https://doi.org/10.1109/ IECON.2013.6700538

Sun, Q., Zhou, J., Guerrero, J. M., & Zhang, H. (2015). Hybrid Three-Phase / Single-Phase Microgrid. 30(10), 5964–5977. IEEE.

Vivek, K. (2019). Design and Analysis of Voltage Droop Control Technique for DC Microgrids. Proceedings of the 3rd International Conference on Electronics and Communication and Aerospace Technology, ICECA 2019, 795–799. https://doi.org/10.1109/ICECA.2019.8822144

Yasin, A. R., Ashraf, M., Bhatti, A. I., Ahmad, S., & Rashid, M. (2016). Sliding mode control for efficient utilization of renewable energy sources in DC micro grid: A comparison with a linear PID controller. Proceedings of the 2016 International Conference and Exposition on Electrical and Power Engineering, EPE 2016, (Epe), 621–625. https://doi. org/10.1109/ICEPE.2016.7781414

Zhang, D., & Wang, J. (2017). Adaptive Sliding-Mode Control in Bus Voltage for an Islanded DC Microgrid. Mathematical Problems in Engineering, 2017. https://doi. org/10.1155/2017/8962086

Zhang, R., & Hredzak, B. (2019). Nonlinear Sliding Mode and Distributed Control of Battery Energy Storage and Photovoltaic Systems in AC Microgrids With Communication Delays. IEEE Transactions on Industrial Informatics, 15(9), 5149–5160. https:// doi.org/10.1109/tii.2019.2896032

Descargas

Publicado

2020-06-27 — Actualizado el 2020-06-27

Cómo citar

Yépez Ponce, H. M., & Yépez Ponce, D. F. (2020). Control de modo deslizante para microrredes: una revisión. Investigación Tecnológica IST Central Técnico, 2(1), 14. Recuperado a partir de http://www.investigacionistct.ec/ojs/index.php/investigacion_tecnologica/article/view/52