Model to calculate the static and dynamic coefficient of friction of materials

Authors

  • Abrahan Jorque ISTCT
  • Carlos Fernandez Universidad Técnica de Ambato, Ambato, Ecuador
  • Xavier Arias Universidad de Las Fuerzas Armadas ESPE, Sangolquí, Ecuador
  • Romel Carrera Universidad de las Fuerzas Armadas- ESPE, Sangolquí, Ecuador

DOI:

https://doi.org/10.70998/itistct.v4i2.148

Keywords:

Coefficient of friction, Static, Dynamic, PLC FX2N|7774

Abstract

In the present work, the implementation of a didactic device that allows calculating the static and dynamic coefficient of friction of certain materials such as glass, steel, metal, wood and plastic is detailed. This research is oriented on an experimental methodology since its design is fully automated based on sensors (LM393, KY-008) and a PLC FX2N-16MR/T. These main components allow the development of an open loop system that allows to determine the acceleration and friction coefficients. The data collection is established by means of five repetitions, which allow establishing the value mostly adjusted to the data collected in the specific bibliography. It is necessary to highlight that the percentage of relative and absolute error of the values of both the bank and the bibliographic collection range from 5 to 10 percent of error.

Author Biographies

Carlos Fernandez, Universidad Técnica de Ambato, Ambato, Ecuador

In the present work, the implementation of a didactic device that allows calculating the static and dynamic coefficient of friction of certain materials such as glass, steel, metal, wood and plastic is detailed. This research is oriented on an experimental methodology since its design is fully automated based on sensors (LM393, KY008) and a PLC FX2N-16MR/T. These main components allow the development of an open loop system that allows to determine the acceleration and friction coefficients. The data collection is established by means of five repetitions, which allow establishing the value mostly adjusted to the data collected in the specific bibliography. It is necessary to highlight that the percentage of relative and absolute error of the values of both the bank and the bibliographic collection range from 5 to 10 percent of error.

Xavier Arias, Universidad de Las Fuerzas Armadas ESPE, Sangolquí, Ecuador

In the present work, the implementation of a didactic device that allows calculating the static and dynamic coefficient of friction of certain materials such as glass, steel, metal, wood and plastic is detailed. This research is oriented on an experimental methodology since its design is fully automated based on sensors (LM393, KY008) and a PLC FX2N-16MR/T. These main components allow the development of an open loop system that allows to determine the acceleration and friction coefficients. The data collection is established by means of five repetitions, which allow establishing the value mostly adjusted to the data collected in the specific bibliography. It is necessary to highlight that the percentage of relative and absolute error of the values of both the bank and the bibliographic collection range from 5 to 10 percent of error.

Romel Carrera, Universidad de las Fuerzas Armadas- ESPE, Sangolquí, Ecuador

In the present work, the implementation of a didactic device that allows calculating the static and dynamic coefficient of friction of certain materials such as glass, steel, metal, wood and plastic is detailed. This research is oriented on an experimental methodology since its design is fully automated based on sensors (LM393, KY008) and a PLC FX2N-16MR/T. These main components allow the development of an open loop system that allows to determine the acceleration and friction coefficients. The data collection is established by means of five repetitions, which allow establishing the value mostly adjusted to the data collected in the specific bibliography. It is necessary to highlight that the percentage of relative and absolute error of the values of both the bank and the bibliographic collection range from 5 to 10 percent of error.

References

A. Pendrill, «Understanding acceleration: An interplay between different mathematics and physics representations,» Journal of Physics, 2019.

D. Ordoñez, «Validación del coeficiente de fricción dinámica mediante tres procedimientos para materiales de uso común en ingeniería,» Universidad Tecnológica de Pereira, Colombia, 2015.

D. Román y G. Chio, «Análisis de modelos de deslizamiento en bloque para predecir el comportamiento dinámico del fenómeno de remoción en masa: Modelo Uniparamétrico y Modelo Biparamétrico,» Redalyc, Colombia, 2018.

D. Vukelic, P. Todorovic , K. Simunovic, J. Miljokovic , G. Simunovic y I. Budak , «A Novel Method for Determination of Kinetic Friction Coefficient using Inclined Plane,» 2021.

E. Balestrieri , P. Daponte , L. De Vito y F. Picareiello , «Research trends and challenges on DAC testing,» Università degli Studi del Sannio, 2020.

Fernández, C. (2022). Banco de pruebas para determinar la aceleración y coeficiente de fricción el cual será designado al Laboratorio de Física de la Facultad de Ingeniería Civil y Mecánica (Bachelor's thesis, Universidad Técnica de Ambato. Facultad de Ingeniería Civil y Mecánica, Carrera de Ingeniería Mecánica).

F. Dominguez., Metodos numericos aplicados a la ingenieria, Mexico, 2014.

J. Youqin, «Coefficients of Friction---Static versus Dynamic,» Illinois, 2020.

S. Hawking, «The universe in a nutshell,» 2001.

W. Castro, J. Arroyave y S. Acevedo, «determinación experimental del coeficiente de fricción empleando sensores movimiento,» Universidad Tecnológica de Pereira, España, 2010.

Published

2022-12-22

How to Cite

Jorque, A., Fernandez, C., Arias, X., & Carrera, R. . (2022). Model to calculate the static and dynamic coefficient of friction of materials. Investigación Tecnológica IST Central Técnico, 4(2). https://doi.org/10.70998/itistct.v4i2.148