Statistical Analysis of the Quality of the Physical and Mechanical Properties of Wood Plastic Composites.

Authors

  • Daniel Casaliglia Gordon Instituto Superior Universitario Central Técnico
  • Jarvis Montúfar Molina Instituto Superior Universitario Central Técnico
  • José Ávila Brito Instituto Superior Universitario Central Técnico
  • Leonardo Beltrán Venegas Instituto Superior Universitario Central Técnico

Keywords:

WPC, WPCR, ASTM D6108, Quality, Composite materials, Coefficient of variation

Abstract

This study evaluates the quality of two commercial plastic woods in Quito: virgin plastic wood (WPC) and recycled plastic wood (WPCR). Test specimens were prepared in accordance with ISO 2818, and compression (ASTM D6108), moisture (BS EN 322), and water absorption (ASTM D570) tests were performed. For moisture and absorption, n = 3 specimens per material were tested, while for compression only n = 1 was used. Results indicate that WPC exhibited higher compressive strength (38.342 MPa) and modulus of elasticity (1,280.900 MPa) compared to WPCR (22.024 MPa; 742.910 MPa). In contrast, WPCR displayed more ductile failure behavior and lower variability in absorption (CV 4.29% vs. 39.17%) and moisture (CV 17.18% vs. 21.21%). Given the limited sample size in the compression tests, the mechanical findings should be regarded as preliminary. It is therefore recommended to increase the number of replicates and to emphasize consistency (CV) as a key parameter in quality control.

References

ASTM International. (2022). Standard test method for water absorption of plastics (ASTM D570-22). ASTM International.

ASTM International. (2024). Standard Test Method for Compressive Properties of Plastic Lumber and Shapes (ASTM D6108-24). ASTM International.

Azizan, A., Johar, M., Karam Singh, S., Abdullah, S., Koloor, S., Petrů, M., Wong, K., & Tamin, M. (2021). An Extended Thickness-Dependent Moisture Absorption Model for Unidirectional Carbon/Epoxy Composites. Polymers, 13(3), 440. https://doi.org/10.3390/polym13030440

British Standards Institution. (1994). Wood-based panels. Determination of moisture content (BS EN 322:1994). BSI.

Brito, M., Santos, W., Correia, B., Queiroz, R., Tavares, F., Oliveira, G., & Lima, A. (2019). Moisture Absorption in Polymer Composites Reinforced with Vegetable Fiber: A Three-Dimensional Investigation via Langmuir Model. Polymers, 11(11), 1847.

https://doi.org/10.3390/polym11111847

Burgstaller, C., & Renner, K. (2023). Recycling of Wood–Plastic Composites—A Reprocessing Study. Macromol, 3(4), 754-765.

https://doi.org/10.3390/macromol3040043

International Organization for Standardization. (2018). Plastics — Preparation of test specimens by machining (ISO 2818:2018). ISO.

Jalilibal, Z., Amiri, A., Castagliola, P., & Chong, M. (2021). Monitoring the Coefficient of Variation: A Literature Review. Computers & Industrial Engineering, 161.

https://doi.org/10.1016/j.cie.2021.107600

Jian, B., Mohrmann, S., Li, H., Li, Y., Ashraf, M., Zhou, J., & Zheng, X. (2022). A Review on Flexural Properties of Wood-Plastic Composites. Polymers, 14(19), 3942. https://doi.org/10.3390/polym14193942

Jijón, P. (2023). Sobre la gestión de residuos sólidos en quito. Una mirada desde y hacia las organizaciones de base. Revista Cálamo, 11, 111–113. https://doi.org/10.61243/calamo.11.196

Khoaele, K., Gbadeyan, O., Chunilall, V., & Sithole, B. (2023). A review on waste wood reinforced polymer composites and their processing for construction materials. International Journal of Sustainable Engineering, 16(1), 104–116. https://doi.org/10.1080/19397038.2023.2214162

López, Y., Concepción, R., González, M., Martínez, E., & Álvarez, D. (2014). Evaluación de las propiedades físico-mecánicas de los tableros de madera plástica producidos en cuba respecto a los tableros convencionales. Revista Chapingo Serie Ciencias Forestales y Del Ambiente, 20(3), 227–236.

https://doi.org/10.5154/r.rchscfa.2014.02.003

Mitaľová, Z., Mitaľ, D., & Berladir, K. (2024). A Concise Review of the Components and Properties of Wood–Plastic Composites. Polymers, 16(11), 1556. https://doi.org/10.3390/polym16111556

Oliveros, C., Cumbalaza, E., Mina, J., Valencia, M., Suarez, J., & Martinez, N. (2024). Wood Plastic Composite Based on Recycled High-Density Polyethylene and Wood Waste (Sawdust). Polymers, 16(22), 3136.

https://doi.org/10.3390/polym16223136

Ramesh, M., Rajeshkumar, L., Sasikala, G., Balaji, D., Saravanakumar, A., Bhuvaneswari, V., & Bhoopathi, R. (2022). A Critical Review on Wood-Based Polymer Composites: Processing, Properties, and Prospects. Polymers, 14(3), 589. https://doi.org/10.3390/polym14030589

Taheri, F., Chowdhury, S., & Ghiaskar, A. (2025). Comparison of the Performance of Basalt Fiber-Reinforced Composites Incorporating a Recyclable and a Conventional Epoxy Resin. Polymers, 17(10), 1348.

https://doi.org/10.3390/polym17101348

Sommerhuber, P., Wenker, J., Rüter, S., & Krause, A. (2020). Life cycle assessment of wood-plastic composites: Analysing alternative materials and identifying environmental impact drivers. Journal of Cleaner Production, 144, 348-357. https://doi.org/10.1016/j.resconrec.2016.10.012

Published

2025-12-29

How to Cite

Casaliglia Gordon, D., Montúfar Molina, J., Ávila Brito, J., & Beltrán Venegas, L. (2025). Statistical Analysis of the Quality of the Physical and Mechanical Properties of Wood Plastic Composites. Investigación Tecnológica IST Central Técnico, 7(2), 117–135. Retrieved from https://www.investigacionistct.ec/ojs/index.php/investigacion_tecnologica/article/view/195